✔ 最佳答案
圖片參考:
http://imgcld.yimg.com/8/n/HA04628698/o/101006270937813869430680.jpg
設ㄥEDC = x ,
ㄥCEB = 180 - 50 - 60 - 20 = 50°
ㄥCDB = 180 - 60 - 50 - 30 = 40°
ㄥCED = (ㄥCEB = 50°) + (ㄥBED = 180° - 30° - 40° - x) = 160° - x
△CBE 等腰因 ㄥB = ㄥE = 50° , 故 CE = CB......(1)
考慮△CBD , 由正弦定理 :
sin(50 + 30)° / sin 40° = CD / CB
CD = (sin 80° / sin 40°) CB......(2)
在 △CED 中, 由正弦定理 :
sin x / sin (160 - x)° = CE / CD ,
由 (1) & (2) 代入 CE / CD 得 :
sin x / sin (160 - x)°
= CB / [(sin 80° / sin 40°) CB]
= sin 40° / sin 80°
= sin 40° / (2sin40° cos40°)
= 1 / 2cos40°
= (1/2) / cos40°
= sin30° / cos40°
= sin30° / sin50°
即 :
sin (160° - x) sin 30° = sin x sin 50°
sin (180° - (160° - x)) sin30° = sinx sin 50°
sin (x + 20°) sin 30° = sinx sin 50°
觀察可得當 x = 30° 時 , 等式成立。
故ㄥEDC = 30°