高微微分方程計算題

2010-06-27 6:58 am
Verify that ∫ (0~∞) (t^2 + x)^(-1) dt= π/(2x^1/2)
justify differentiating the intergral sign
=> evaluate ∫ (0~∞) (t^2 + x)^ (-n) dt .

回答 (2)

2010-06-27 8:05 am
✔ 最佳答案
題目應該限制x>0
設x=a^2>0, a>0, a=√x
∫[0~∞] 1/(t^2+x) dt=∫[0~∞] 1/(t^2+a^2) dt (Let t=a tanu)
=∫[0~π/2] 1/(a secu)^2 * a*(secu)^2 du
=(1/a) u for u=0~π/2
=π/(2a)= π/(2√x)=(1/2)πx^(-1/2)

(-d/dx)∫[0~∞] (t^2+x)^(-1)dx= (-d/dx)[ (1/2)πx^(-1/2)]
1* ∫[0~∞] (t^2+x)^(-2)dx=(1/2)π(1/2)x^(-3/2)
(-d/dx)^2∫[0~∞] (t^2+x)^(-1)dx=
2!*∫[0~∞] (t^2+x)^(-3)dx=(1/2)π(1/2)(3/2)x^(-5/2)
(-d/dx)^3∫[0~∞] (t^2+x)^(-1)dx=
3! ∫[0~∞] (t^2+x)^(-4)dx=(1/2)π(1/2)(3/2)(5/2)x^(-7/2)
...
(-d/dx)^n ∫[0~∞] (t^2+x)^(-1)dx=n! ∫[0~∞] (t^2+x)^(-n-1)dx
=(1/2)π(1/2)(3/2)(5/2)...[(2n-1)/2]x^[-(2n+1)/2]
so,n!∫[0~∞] (t^2+x)^(-1)dx=(1/2)π(1/2)(3/2)(5/2)...[(2n-1)/2]x^[-(2n+1)/2]
n!∫[0~∞] (t^2+x)^(-1)dx=(1/2)π[1*3*...*(2n-1)]/2^n x^[-(2n+1)/2]
∫[0~∞] (t^2+x)^(-n-1)dx=(π/2) (2n)!/(4^n*n!) x^[-(2n+1)/2]
∫[0~∞] (t^2+x)^(-n)dx=(2π) (2n-2)!/[4^n*(n-1)!] x^[-(2n-1)/2]
2010-06-27 8:46 am
題目更漏了一個限制,就是n是正整數,否則必定是出錯題,因為絕對沒有可能d非整數次。

而事實上∫(0~∞)(t² + x)‾ⁿ dt,n沒有限制必定要是正整數時候的結果是這樣:
http://www.wolframalpha.com/input/?i=integrate+%28t%5E2+%2B+x%29%5E-n%2Ct%2C0%2Cinf

這樣的結果,不用beta function是絕對做不出來的!


收錄日期: 2021-04-30 14:58:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100626000015KK08686

檢視 Wayback Machine 備份