Differentiation

2010-06-23 9:41 pm
23)'

If xsin(2x + y) = y^2

Find dy/dx.

回答 (3)

2010-06-23 9:49 pm
✔ 最佳答案
xsin(2x+y)=y^2
x{d[sin(2x+y)]/dx]+sin(2x+y)[(dx/dx)]=2y(dy/dx)
(x)[cos(2x+y)]d(2x+y)/dx+sin(2x+y)=2y(dy/dx)
(x)[cos(2x+y)(2+dy/dx)+sin(2x+y)=2y(dy/dx)
2xcos(2x+y)+xcos(2x+y)(dy/dx)+sin(2x+y)=2y(dy/dx)
[xcos(2x+y)-2y](dy/dx)=-sin(2x+y)-2xcos(2x+y)
dy/dx=[-sin(2x+y)-2xcos(2x+y)]/[xcos(2x+y)-2y]

2010-06-23 14:44:53 補充:
補充得好好
不過兩方答案都得.....
2010-06-24 6:36 pm
分別係 個負響上面定下面.....
2010-06-23 10:03 pm
補充:
Simplified
dy/dx=[-sin(2x+y)-2xcos(2x+y)]/[xcos(2x+y)-2y]

dy/dx=-[sin(2x+y)+2xcos(2x+y)]/[xcos(2x+y)-2y]

dy/dx=[sin(2x+y)+2xcos(2x+y)]/-[xcos(2x+y)-2y]

dy/dx=[sin(2x+y)+2xcos(2x+y)]/[-xcos(2x+y)+2y]

dy/dx=[sin(2x+y)+2xcos(2x+y)]/[2y-xcos(2x+y)]


收錄日期: 2021-04-13 17:20:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100623000051KK00569

檢視 Wayback Machine 備份