一題數學:數列之極限值

2010-06-24 5:40 am
試作出一有理數數列<an>,使其極限值為√2


這題看來簡單,但……還是作不出來

請大大們幫忙了
更新1:

請問大大 a(1)=2, a(n+1)= [a(n)+ 2/a(n)]/2 這一行,是憑經驗或是???

更新2:

sorry... 可以問一下Newton's method 是指???

回答 (1)

2010-06-24 5:52 am
✔ 最佳答案
a(1)=2, a(n+1)= [a(n)+ 2/a(n)]/2, then
by induction, a(n) are rational number ,√2<=a(n) and a(n+1)<a(n) for n>0
(since, a(n+1)=[a(n)+2/a(n)]/2 >= √[a(n)*2/a(n)]=√2
and 2[a(n+1)-a(n)]= 2/a(n) - a(n)= [2-a(n)^2]/a(n) < 0 )
so that the sequence {a(n)} is decreasing and bounded below by √2
then lim(n->inf) a(n) exists.
Let x=lim(n->inf) a(n), then
lim(n->inf) a(n+1)=lim(n->inf) [a(n)+2/a(n)]/2
x=[x+2/x]/2, then x^2=2, x=√2

2010-06-23 22:36:51 補充:
Solve x^2=2 by the Newton's method and x1=2.

2010-06-26 09:03:15 補充:
Newton's method是指用切線方法求方程根的近似值
公式如下:解f(x)=0, 先猜(預測)a(1)
再用遞迴a(n+1)=a(n)- f(a(n))/f'(a(n))
本題: a(1)=2, a(n+1)=a(n)-[a(n)^2-2]/[2a(n)]=[a(n)+2/a(n)]/2


收錄日期: 2021-04-30 14:56:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100623000016KK08501

檢視 Wayback Machine 備份