微積分 質心 急問

2010-06-22 7:47 am
Find the center of mass of the solid bounded by z=4-x^2-y^2 and above the square with vertices (1,1),(1,-1),(-1,-1)and(-1,1), if the density is p=3

請求詳解 中文翻譯 15點+最佳解答

回答 (2)

2010-06-24 6:49 pm
✔ 最佳答案
立體區域由曲面z=4-x^2-y^2之下,而在(1,1),(1,-1),(-1,-1),(-1,1)形成正方形上,
若密度函數為 p=3, 試求立體區域的質心(坐標).

圖片參考:http://imgcld.yimg.com/8/n/AD04686329/o/101006211008313869424160.jpg

如圖立體,底為正方形x=-1~1, y=-1~1
總質量M=∫[-1~1]∫[-1~1] 3(4-x^2-y^2) dy dx
=12∫[0~1]∫[0~1] (4-x^2-y^2) dy dx
=12∫[0~1] (4-x^2- 1/3) dx
=12(4- 1/3- 1/3)=40
質心位置:由對稱性知 xbar=ybar=0
zbar=(1/M)∫[-1~1]∫[-1~1]∫[0~4-x^2-y^2] 3z dz dy dx
=(3/40)*2*∫[0~1]∫[0~1] (4-x^2-y^2)^2 dy dx
=(3/20)∫[0~1] [(4-x^2)^2- (2/3)(4-x^2)+ 1/5] dx
=127/75
故質心坐標(0,0, 127/75)
2010-06-22 4:47 pm
發現在與端點(1,1)的正方形之上一定的由z=4-x^2-y^2和質心固體, (1, - 1), (- 1, - 1)和(- 1,1),如果密度是p=3


收錄日期: 2021-04-30 14:57:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100621000010KK10083

檢視 Wayback Machine 備份