高一數學(三角函數)急!大師請進Thanks

2010-06-20 8:24 am
抱歉題目有點多, 但請撥冗解答, 謝謝!
1.X€R, 則cosx+sinx/2之極大值為? 極小值為?
答案︰極大值9/8 極小值-2
2.函數f(x)=3sinx-2/sinx+3的最大值為? 極小值為?
答案︰極大值1/3 極小值為-5
3.當sinx=3cosx時, sin2x=?
答案︰3/5
4.求cos平方π/8-sin平方π/8=?
答案︰√2/2
5.若二次方程式x平方+4αx+3α+1=0兩根為tanα/2、tanβ/2, 則tan(α+β)
=?
答案︰-24/7

回答 (2)

2010-06-20 11:00 am
✔ 最佳答案
1.
cos(x) + sin(x/2)
= 1 - 2sin²(x/2) + sin(x/2)
= -2[sin²(x/2) + (1/2)sin(x/2)] + 1
= -2[sin²(x/2) + (1/2)sin(x/2) + (1/4)²] + 2(1/4)² + 1
= -2[sin(x/2) + (1/4)]² + (9/8)

-2[sin(x/2) + (1/4)]² ≤ 0
所求最大值 = -2(0) + (9/8) = 9/8

當 sin(x/2) = 1,-2[sin(x/2) + (1/4)]² 為最小值。
所求的最小值 = -2[1 + (1/4)]² + (9/8) = -2


2.
(3sinx - 2)/(sinx + 2)
= (3sinx + 6 - 8)/(sinx + 2)
= [3(sinx + 2) - 8]/(sinx + 2)
= 3 - [8/(sinx + 2)]

當 sinx = -1,- [8/(sinx + 2)] 為最大值。
所求的取大值 = 3 - [8/(1 + 2)] = 1/3

當 sinx = 1,- [8/(sinx + 2)] 為最小值。
所求的最小值 = 3 - [8/(-1 + 2)] = -5


3.
sinx = 3cosx
sinx/cosx = 3
tanx = 3/1

sinx = 3/√(1² + 3²) = 3/√10
cosx = 1/√(1² + 3²) = 1/√10

sin2x = 2sinx cosx = 2•(3/√10)•(1/√10) = 6/10 = 3/5


4.
恆等式:cos2x = cos²x - sin²x

cos²(π/8) - sin²(π/8)
= cos[2(π/8)]
= cos(π/4)
= (√2)/2


5.
x² + 4αx + (3α + 1) = 0
兩根之和: tan(α/2) + tan(β/2) = 4α
兩根之積: tan(α/2)•tan(β/2) = 3α + 1

tan[(α/2) + (β/2)]
= [tan(α/2) + tan(β/2)] / [1 - tan(α/2)•tan(β/2)]
= 4α/[1 - (3α + 1)]
= 4/3

tan(α + β)
= tan2[(α/2) + (β)/2]
= 2tan[(α/2) + (β/2)] / {1 - tan²[(α/2) + (β/2)]}
= 2(4/3) / [1 - (4/3)²]
= (8/3) / [1 - (16/9)]
= (8/3) / -(7/9)
= -(8/3)•(9/7)
= -24/7
參考: andrew
2010-06-20 8:26 am
恭喜你答案全對

看起來是這樣


收錄日期: 2021-04-13 17:19:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100620000016KK00281

檢視 Wayback Machine 備份