pure reduction formula(urgent)

2010-06-20 7:52 am
I m,n = ∫(Π/4 to 0) [sin^(m)θ / cos^(n) θ] dθ
prove that I m+2,n+2 = 1/(n+1) (1/√2)^(m-n) - [(m+1)/(n+1)] I m,n
(請詳細講述點做, 同埋個 u 同dv點let)
thanks

回答 (1)

2010-06-20 9:11 am
✔ 最佳答案
F(m+2,n+2)=∫[0,a] (sinx)^(m+2)/(cosx)^(n+2) dx (a=pi/4)
=∫[0,a] (sinx)^m/(cosx)^n *(secx)^2 dx-∫[0,a] (sinx)^m/(cosx)^n dx
(by parts)=(sinx)^m/(cosx)^n*tanx|[0~a]
-∫[0,a] [(m+1)(sinx)^m/(cosx)^n+n(sinx)^(m+2)/(cosx)^(n+2)] dx
=(1/√2)^(m-n)-(m+1)F(m,n)-nF(m+2,n+2)
then
F(m+2,n+2)=1/(n+1)*(1/√2)^(m-n)-(m+1)/(n+1)F(m,n)

note: (by parts) u=(sinx)^m/(cosx)^n, dv=(secx)^2 dx


圖片參考:http://imgcld.yimg.com/8/n/AD04686329/o/701006190171213873424510.jpg



收錄日期: 2021-04-30 14:55:37
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100619000051KK01712

檢視 Wayback Machine 備份