[積分,極限]求積分的極限值

2010-06-10 7:21 pm
試求lim(n->∞)∫[0~nπ] exp(-x) |sin(nx)| dx

圖片參考:http://imgcld.yimg.com/8/n/AC06565267/o/161006100233313872535890.jpg

回答 (4)

2010-06-11 9:57 pm
✔ 最佳答案
Ans: 2/pi

2010-06-11 13:57:19 補充:
∫[0~nπ] exp(-x) |sin(nx)| dx
=(1/n)∫[0~n^2π] exp(-x/n) |sinx| dx
=(1/n)Σ[k=0~n^2-1] ∫[kπ~(k+1)π] exp(-x/n) |sinx| dx
=n/(n^2+1)*[exp(-π/n)+1]Σ[k=0~n^2-1]exp(-kπ/n) [geometric series r=exp(-π/n)]
=n/(n^2+1)*[1+exp(-π/n)]*[1-exp(-nπ)]/[1-exp(-π/n)]
=n^2/(n^2+1)*[1+exp(-π/n)]*[1-exp(-nπ)]*{[1/n]/[1-exp(-π/n)]}
-->1*[1+1]*[1-0]*{1/π} (Apply L' rule to the last term)
=2/π

圖片參考:http://imgcld.yimg.com/8/n/AD04686329/o/161006100233313872535900.jpg

2010-06-11 6:37 am
相似題:

http://tw.knowledge.yahoo.com/question/question?qid=1106083114274

這題不是那麼的簡單吶
2010-06-11 5:18 am
Is lim(n→∞)∫(0 to nπ)e^(-x)|sin nx| dx = lim(n→∞)∫(0 to ∞)e^(-x)|sin nx| dx? Why?
2010-06-11 1:26 am
感覺上做得出來,不過我用的方法很爛
還請天助大幫忙詳解


收錄日期: 2021-05-02 10:16:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100610000016KK02333

檢視 Wayback Machine 備份