中4maths help me!!!急!!

2010-06-09 9:09 am
證明
1+cosθ -sinθ =1-sinθ
1+cosθ +sinθ cOSθ

回答 (2)

2010-06-10 7:38 am
1+2cosθ+cos²θ-sin²θ
=2cosθ+2cos²θ

2010-06-09 23:38:35 補充:

圖片參考:http://h.imagehost.org/0787/ScreenHunter_02_Jun_09_23_37.gif


http://h.imagehost.org/0787/ScreenHunter_02_Jun_09_23_37.gif
2010-06-09 6:57 pm
L.H.S. = [(1+cosθ) - sinθ] / [(1 + cosθ) + sinθ]
= [(1+cosθ) - sinθ]^2 / {[(1 + cosθ) + sinθ][(1+cosθ) - sinθ]}
= [(1 + cosθ)^2 - 2(1 + cosθ)sinθ + (sinθ)^2] / [(1 + cosθ)^2 - (sinθ)^2]
= [1 + 2cosθ + (cosθ)^2 - 2sinθ - 2sinθcosθ + (sinθ)^2] / [1 + 2cosθ + (cosθ)^2 - (sinθ)^2]
= [2 + 2cosθ - 2sinθ - 2sinθcosθ] / [2cosθ + (cosθ)^2]
= [2(1 + cosθ) - 2sinθ(1 + cosθ)] / [2cosθ(1 + cosθ)]
= [2(1 + cosθ)(1 - sinθ)] / [2cosθ(1 + cosθ)]
= (1 - sinθ) / cosθ
= R.H.S.
參考: me


收錄日期: 2021-04-23 20:40:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100609000051KK00077

檢視 Wayback Machine 備份