中4maths help me!!!急!!
證明
1+cosθ -sinθ =1-sinθ
1+cosθ +sinθ cOSθ
回答 (2)
L.H.S. = [(1+cosθ) - sinθ] / [(1 + cosθ) + sinθ]
= [(1+cosθ) - sinθ]^2 / {[(1 + cosθ) + sinθ][(1+cosθ) - sinθ]}
= [(1 + cosθ)^2 - 2(1 + cosθ)sinθ + (sinθ)^2] / [(1 + cosθ)^2 - (sinθ)^2]
= [1 + 2cosθ + (cosθ)^2 - 2sinθ - 2sinθcosθ + (sinθ)^2] / [1 + 2cosθ + (cosθ)^2 - (sinθ)^2]
= [2 + 2cosθ - 2sinθ - 2sinθcosθ] / [2cosθ + (cosθ)^2]
= [2(1 + cosθ) - 2sinθ(1 + cosθ)] / [2cosθ(1 + cosθ)]
= [2(1 + cosθ)(1 - sinθ)] / [2cosθ(1 + cosθ)]
= (1 - sinθ) / cosθ
= R.H.S.
參考: me
收錄日期: 2021-04-23 20:40:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100609000051KK00077
檢視 Wayback Machine 備份