✔ 最佳答案
用餘弦定理 :
b:c=1:3 -----> c = 3b
cosA = (b^2 + c^2 - a) / 2bc
cos35° = (b^2 + (3b)^2 - 25) / [2b(3b)]
(cos35°)(6b^2) = 10b^2 - 25
(10 - 6cos35°)b^2 = 25
b = 2.21728
c = 3 * 2.21728 = 6.65184
三角形ABC面積 = (1/2)(sin35)bc
= (1/2)(sin35)(2.21728)(6.65184)
= 4.23 cm^2
2010-06-07 22:50:08 補充:
更正 , 錯式 :
用餘弦定理 :
b:c=1:3 -----> c = 3b
cosA = (b^2 + c^2 - a^2) / 2bc
cos35° = (b^2 + (3b)^2 - 25^2) / [2b(3b)]
(cos35°)(6b^2) = 10b^2 - 625
(10 - 6cos35°)b^2 = 625
b = 11.08641
c = 11.08641*3 = 33.25922
三角形ABC面積 = (1/2)(sin35°)bc
= (1/2)(sin35°)(11.08641)(33.25922)
= 105.746 cm^2
2010-06-07 22:54:20 補充:
更正 , 背錯式 :
用餘弦定理 :
b:c=1:3 -----> c = 3b
cosA = (b^2 + c^2 - a^2) / 2bc
cos35° = (b^2 + (3b)^2 - 25^2) / [2b(3b)]
(cos35°)(6b^2) = 10b^2 - 625
(10 - 6cos35°)b^2 = 625
b = 11.08641
c = 11.08641*3 = 33.25922
三角形ABC面積 = (1/2)(sin35°)bc
= (1/2)(sin35°)(11.08641)(33.25922)
= 105.746 cm^2