✔ 最佳答案
1)
sin^2 B + cos^2 B = 1
(-2/3)^2 + cos^2 B = 1
cos^2 B = 1 - 4/9 = 5/9
cos B = √5 / 3 or - √5 /3 (rejected since cos B > 0)
the value of cos B - tan B
= cos B - (sinB)/cosB
= √5 /3 - (-2/3)/ (√5 /3)
= √5 /3 + 2√5 /5
= 11√5 /15
2)
tan (180 + B) + tan (90 - B)
= tan B + 1/tan B
2010-06-07 13:47:44 補充:
= (sin B)/cosB + (cosB)/sinB
= [(sinB)^2 + (cosB)^2] / (cosB sinB)
= 1 / (cosB sinB)
= 2 / sin2B
2010-06-07 14:12:43 補充:
樓主品學兼憂 :
For Q1 :
My answer 11√5 /15
= 11√5 / (3 * 5)
= 11 / 3√5 = Given answer.
For Q2 :
I think the given answer is wrong ,
Set B = 45
tan (180 + B) + tan (90 - B)
= tan 225 + tan 45
= 1 + 1
= 2
But the given answer 1 / (sinB tanB)
= 1 / (sin45 tan45)
= √2 not = 2
2010-06-07 14:12:51 補充:
The answer should be 1 / (cosB sinB)
1 / (cos45 sin45) = 1 / (√2/2 * √2/2) = 2
2010-06-07 16:51:41 補充:
= sinB / cosB + cosB / sinB
= [(sinB)^2 + (cosB)^2] / (sinB cosB)
= 1 / (sinB cosB)
or
= 2 / 2(sinB cosB)
= 2 / sin2B