✔ 最佳答案
圖片參考:
http://upload.wikimedia.org/wikipedia/commons/thumb/d/d9/KochFlake.svg/280px-KochFlake.svg.png
Taking s as the side length, the original triangle area is
圖片參考:
http://upload.wikimedia.org/math/e/6/c/e6c1df0c94756d5cef1bff73312f3289.png
triangles. Combining these two formulae gives the iteration formula:
圖片參考:
http://upload.wikimedia.org/math/8/a/a/8aa6d7febcc61f86c64450536a7ef5c9.png
where A0 is area of the original triangle. Substituting in
圖片參考:
http://upload.wikimedia.org/math/9/5/6/9569f22af8487bd8fa8f7fb7257fd530.png
and expanding yields:
圖片參考:
http://upload.wikimedia.org/math/3/e/b/3eb15f1fe36a16cbe1cc01cd53f576c7.png
In the limit, as n goes to infinity, the limit of the sum of the powers of 4/9 is 4/5, so
圖片參考:
http://upload.wikimedia.org/math/e/8/c/e8cc19c0eef23aa55711feb6732398ce.png
So the area of a Koch snowflake is 8/5 of the area of the original triangle, or
圖片參考:
http://upload.wikimedia.org/math/5/1/6/51662cacaf689eb28029a4a2a5582acf.png
.[2] Therefore the infinite perimeter of the Koch triangle encloses a finite area.
中文解釋可參考 :
http://www.math.ied.edu.hk/ITProj2003/Module_4/Aesthetic_Perspective.htm
2010-06-03 13:03:40 補充:
The Koch curve has an infinite length because each time the steps above are performed on each line segment of the figure there are four times as many line segments, the length of each being one-third the length of the segments in the previous stage.
2010-06-03 13:03:45 補充:
Hence the total length increases by one third and thus the length at step n will be (4/3)n of the original triangle perimeter.
2010-06-03 13:14:43 補充:
Here S = 1 cm ,
the area = (2√3)/5 cm^2