請教下點做 ∫2 x^2 lnx dx ?

2010-06-02 8:43 am
請教下點做 ∫2 x^2 lnx dx ?(integration by part)

回答 (1)

2010-06-02 5:09 pm
✔ 最佳答案
∫2x^2 lnx dx

= 2/3 ∫ lnx d(x^3) (d(x^3) = 3x^2dx)

= (2/3) x^3lnx - (2/3) ∫ x^3 d(lnx)

= (2/3) x^3lnx - (2/3) ∫ x^3(1/x) dx

= (2/3) x^3lnx - (2/3) ∫x^2 dx

= (2/3) x^3lnx - (2/9) x^3 + C

where C is a constant
參考: Prof. Physics


收錄日期: 2021-04-19 22:25:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100602000051KK00051

檢視 Wayback Machine 備份