✔ 最佳答案
1已知f(x) + g(x) = x³ + 3, f(x) - g(x) = 3x, 則g(2) - f(3) = ?
f(x) + g(x) = x³ + 3 ...... [1]
f(x) - g(x) = 3x ...... [2]
[1] + [2]:
2f(x) = x³ + 3x + 1
f(x) = (x³ + 3x + 1)/2
[1] - [2]:
2g(x) = x³ - 3x + 1
g(x) = (x³ - 3x + 1)/2
g(2) = [(2)³ - 3(2) + 1]/2 = 3/2
f(3) = [(3)³ + 3(3) + 1]/2 = 37/2
g(2) - f(3) = (3/2) - (37/2) = -17
2若函數f(x) = (k² - 9)x² - 2x + k + 3 的圖形通過原點,則 f(3) =?
f(x) 通過原點: f(0) = 0
(k² - 9)(0)² - 2(0) + k + 3 = 0
k = -3
f(x) = [(-3)² - 9)x² - 2x + (-3) + 3
f(x) = -2x
3設a為常數,若 f(x) = (a + 2)x² + (3a + 1)x + 4 為x的一次函數, 試問:a=?, f(-1)=?
f(x) 為 x 的一次函數,則 x² 的係數為 0。
a + 2 = 0
a = -2
f(x) = [(-2) + 2)]x² + [3(-2) + 1)x + 4
f(x) = -5x + 4
f(-1) = -5(-1) + 4
f(-1) = 9
2010-05-31 12:13:20 補充:
2.
f(x) = -2x
f(-3) = -2(-3)
f(-3) = 6