Integration: reduction formula

2010-05-22 7:25 am
Establish a reduction formula for
In=∫ (a+bcosx)^(-n) dx
where n is an integer and a, b are constants.
Hence, find
∫from 0 to π (5+3cosx) ^(-4) dx

回答 (2)

2010-05-22 10:22 am
✔ 最佳答案
I(n-2)=∫ (a+bcosx)^2/(a+bcosx)^n dx
=b^2∫(cosx)^2/(a+bcosx)^n dx+2a∫(bcosx+a-0.5a)/(a+bcosx)^ndx
=b^2∫(cosx)^2/(a+bcosx)^n+2a I(n-1)-a^2 I(n)
so, b^2∫(cosx)^2/(a+bcosx)^n dx= a^2 I(n)-2a I(n-1)+I(n-2) -----(A)

b^2∫(sinx)^2/(a+bcosx)^ndx (integration by parts)
=bsinx/[(n-1)(a+bcosx)^(n-1)]-1/(n-1)∫(bcosx+a -a)/(a+bcosx)^(n-1)dx
=bsinx/[(n-1)(a+bcosx)^(n-1)]-1/(n-1) I(n-2)+ a/(n-1) I(n-1)
=p(x)-1/(n-1) I(n-2)+a/(n-1) I(n-1) ----(B)

(A)+(B):
b^2I(n)= a^2I(n)-(2n-3)a/(n-1) I(n-1)+(n-2)/(n-1) I(n-2)+p(x)
so,I(n)=[(2n-3)a/(n-1) I(n-1)- (n-2)/(n-1) I(n-2)-p(x)]/(a^2-b^2)
thus I(n)=[5(2n-3)/(n-1) I(n-1)- (n-2)/(n-1) I(n-2) -p(x)]/16

If I(n)=∫[0~π] 1/(5+4cosx)^n dx, then
I(n)=[5(2n-3)/(n-1) I(n-1)- (n-2)/(n-1) I(n-2)]/16 ----(C)

I(0)=∫[0~π] 1dx=π
I(1)=∫[0~π] 1/(5+3cosx)dx (set t=tan(x/2))
=∫[0~∞] 1/(4+t^2) dt=π/4
by(C): I(2)=[5 I(1)]/16=5π/64
by(C): I(3)=[(15/2) I(2)- I(1)/2]/16= 59π/2^11
by(C): I(4)=[(25/3) I(3)-(2/3) I(2)]/16= 385π/2^15=385π/32768
2010-05-22 7:44 am
Pure Maths Question?


收錄日期: 2021-04-22 00:48:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100521000051KK01931

檢視 Wayback Machine 備份