工程數學拉式轉換解

2010-05-18 7:44 pm
以拉式轉換解 y"+4y'+3y=e^t ; y(0) =0, y'(0)=2 。

回答 (1)

2010-05-18 8:09 pm
✔ 最佳答案
y" + 4y' + 3y = e^t, y(0) = 0, y'(0) = 2

L{y" + 4y' + 3y}(s) = L{e^t}(s)

Denote Y(s) = L{y(t)}(s)

So, [s^2Y(s) - sy(0) - y'(0)] + 4[sY(s) - y(0)] + 3Y(s) = 1/(s - 1)

(s^2 + 4s + 3)Y(s) - 2 = 1/(s - 1)

(s + 3)(s + 1)Y(s) = 1/(s - 1) + 2

Y(s) = 1/(s - 1)(s + 1)(s + 3) + 2/(s + 1)(s + 3)

Y(s) = [1/8(s - 1) - 1/4(s + 1) + 1/8(s + 3)] + [1/(s + 1) - 1/(s + 3)]

Y(s) = 1/8(s - 1) + 3/4(s + 1) - 7/8(s + 3)

y(t) = L^-1{Y(s)}(t)

= (1/8)e^t + (3/4)e^(-t) - (7/8)e^(-3t)
參考: Prof. Physics


收錄日期: 2021-04-19 22:21:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100518000010KK02523

檢視 Wayback Machine 備份