數學證明題~>

2010-05-16 4:50 pm
Let f(x) and g(x) be two solutions of the differential equation y'=F(x,y) in a domain where F satisfies the condition:
y1<y2 implies F'(x,y2)-F(x,y1)<等於L(y2-y1) show that /f(x)-g(x)/<e^L(x-a)/f(a)-g(a)/ if x>a

回答 (1)

2010-05-16 5:53 pm
✔ 最佳答案
F(x, y2) - F(x,y1) <= L(y2 - y1)

So, F(x,y) is lipschitz.

y2' - y1' <= L(y2 - y1)

Separating variables,

S d(y2 - y1) / (y2 - y1) <= S L dx

ln│y2 - y1│ <= e^(Lx) + C

│y2 - y1│ <= Ae^(Lx), where A is a constant

For f(x) and g(x) are the solutions to the differential equation,

│f(x) - g(x)│ <= Ae^(Lx) ... (1)

Put x = a,

│f(a) - g(a)│ <= Ae^(La)

A <= e^(-La)│f(a) - g(a)│ ... (2)

Putting back (2) into (1):

│f(x) - g(x)│ <= e^L(x - a)│f(a) - g(a)│ for x > a
參考: Physics king


收錄日期: 2021-04-19 22:15:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100516000016KK01721

檢視 Wayback Machine 備份