向量分析求解

2010-05-14 7:31 pm
http://img4.imageshack.us/img4/3950/75678.jpg















請不要直接將答案給我

只有兩題而已

請含計算過程^^

回答 (1)

2010-05-14 8:51 pm
✔ 最佳答案
1. 每個分量各自作偏微分便可。

A = (3xy - y^2) i + cosxy j + (x + 3y) k

Ax = 3y i - ysinxy j + k

Ay = (3x - 2y) i - xsinxy j + 3k

Axx = (Ax)x = -y^2cosxy j

Axy = (Ax)y = 3i - (sinxy + xycosxy) j

Ayy = (Ay)y = -2i - x^2cosxy j


2. fA = (x^2y^2z^2) i + (xy^3z^2) j + (x^2y^2z^2) k

(fA)xxy = [(2x^2yz^2) i + (3xy^2z^2) j + (2x^2yz^2) k]xx

= [(4xyz^2) i + (3y^2z^2) j + (4xyz^2) k]x

= (4yz^2)(i + k)

所以在(1, 1, 1)的值為 = 4(1)(1)^2(i + k) = 4i + 4k
參考: Physics king


收錄日期: 2021-04-19 22:13:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100514000015KK02353

檢視 Wayback Machine 備份