al matrix with inequality

2010-05-08 11:43 pm
Let A be a 3x3 matrix with property that A^2=O or A^2=I,where O and I are the
3x3 zero matrix and 3X3 identity matrix, respectively.
Prove that det(A+I)>=det(A-I)

回答 (1)

2010-05-09 3:35 am
✔ 最佳答案
If AA = I

0 <= [det (A+I)]^2 = det (A+I) (A+I) = det (AA + 2A + I) = det
(2A+2I) = 2 det (A+I)

If AA = O

0 <= [det (A/2+I)]^2 = det (A/2+I) (A/2+I) = det (AA/4 + A + I)
= det (A+I)

Therefore for any matrix A, if AA =O or AA = I, then det(A + I) =>
0

Now as (– A) (– A) = AA = I or O, det [I + (– A)] => 0

Then

det(A – I) = - det (I – A) = - det [I + (– A)] <=0 as (– A)
also satisfies (– A) (– A) = I or (– A) (– A) = O

hence det(A + I) => 0 => det(A – I)

2010-05-08 22:36:41 補充:
小錯誤
det(2A+2I) = det(2 I) det (A+I) = 8 det(A + I) for 3x3 matrix


收錄日期: 2021-05-01 01:22:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100508000051KK00837

檢視 Wayback Machine 備份