f.2 maths trigonometric ratios

2010-05-02 10:35 pm

1)In the figure, the length AB of the drawbridge is 13m, and the width BC of a channel is 10m. After putting down the drawbridge, point A is right above point C. Find the turning angle θ of the drawbridge.
http://cg-love.com/image-2622_4BDD1A60.jpg
2)
The figure shows a rectangle ABCD. EAFG is a straight line. Find BF.
http://cg-love.com/image-7D91_4BDD1C26.jpg
3)
Find x and θ in the figure.
http://cg-love.com/image-B653_4BDD1BEA.jpg
4)
In the figure, ABCD is a square and AED is a straight line. Find ∠BEC.
http://cg-love.com/image-EF9A_4BDD1C4D.jpg
5)
In the figure, QRS is a straight line. Find the distance between Q and R.
http://cg-love.com/image-DCBE_4BDD1C7A.jpg

回答 (2)

2010-05-02 11:01 pm
✔ 最佳答案
1)

cosㄥABC = BC/AB = 10/13

ㄥABC = 39.71514°

θ = 90 - 39.71514 = 50.28°(2dec.)

2)

AB = DC = 25

ㄥBAF = 180 - 90 - 55 = 35°

BF / AB = sin 35°

BF / 25 = sin 35°

BF = 14.34 (2dec.)

3)

x^2 + (11-6)^2 = 13^2

x = 12

12/13 = sin θ

θ = 67.38°

4)

tanㄥAEB = AB/AE = 10/4

ㄥAEB = 68.19859°

tanㄥDEC = CD/DE = 10/(10-4) = 5/3

ㄥDEC = 59.03624°

ㄥBEC = 180 - 68.19859 - 59.03624 = 52.77°(2dec.)

5)

PS / (QR + 50) = tan22°
PS = (QR+50)tan22°......(1)

PS / 50 = tan43°
PS = 50tan43°......(2)

(1) = (2) = PS :

(QR+50)tan22° = 50tan43°

QR+50 = (50tan43°)/tan22°

QR = 65.40279 m





2010-05-03 7:59 am
1)sin BAC=10/13
BAC=sin^-1(10/13)
BAC= θ
so, θ =sin^-1(10/13)=50.3
2)angle BAF=90-55=35
BA=CD=25
sin35=BF/25
BF=25sin35
=14.3
3)X=(13^2-5^2)^(1/2)
=12
cosθ=5/13
θ=67.4
4) tan ABE=10/4
BEC=tan^-1(4/10)+tan^-1(6/10)
=52.8
5)PS=50tan43
QR=((50tan43)/tan22)-50
=65.4



收錄日期: 2021-04-13 17:13:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100502000051KK00888

檢視 Wayback Machine 備份