limit問題 關於 e既law

2010-05-01 9:59 pm
lim (1+1/n)^n = 1
n→∞

咁中間變左減點計?(請show steps)
lim (1-1/n)^n
n→∞

回答 (3)

2010-05-01 11:36 pm
✔ 最佳答案




lim(n→∞)_(1+1/n)^n
=?

Sol

lim(n→∞)_(1+1/n)^n

=lim(n→∞)_e^[nln(1+1/n)]

=e^(lim(n->∞)_[nln(1+1/n)])

=e^(lim(n->∞)_[ln(1+1/n)/(1/n)]

=e^(lim(x->0+)_[ln(1+x)/x] 0/0 type

=e^(lim(x->0+)_[1/(1+x)]

=e^1

=e



lim(n→∞)_(1─1/n)^n

=lim(n→∞)_e^[nln(1-1/n)]

=e^(lim(n->∞)_[nln(1-1/n)])

=e^(lim(n->∞)_[ln(1-1/n)/(1/n)]

=e^(lim(x->0+)_[ln(1-x)/x] 0/0 type

=e^(lim(x->0+)_[-1/(1-x)]

=e^(-1)





2010-05-05 11:54 pm
2010-05-01 11:28 pm
lim (n->inf.) (1-1/n)^n

=lim (n->inf.) (1+1/(-n))^(-(-n))

=lim (n->inf.) 1/(1+1/(-n))^(-n)

=1/e^-1

=e//


收錄日期: 2021-04-25 13:59:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100501000051KK00817

檢視 Wayback Machine 備份