perfect square 奧數3條,數學高手們進。

2010-05-01 6:23 am
1.
If a^3= b^2 and c^3= d^2, where a, b, c, d are positive integers; and if c-a= 25, what are a,b,c and d?
2.
Show that if a, b, c and d are integers such that m= a^2+b^2 , n= c^2+d^2 , then mn can also be expressed as the sum of the square of 2 integers.
3.
Find all 4-digit numbers ABCD so that the last 4 digits in the square of this given 4-digit number is still ABCD.

請寫計算過程,請大家盡力回答,分享知識,謝謝!
更新1:

不明 D=6 的10位是2c 的個位加3。爲什麽10位是2c的個位??

回答 (1)

2010-05-01 7:35 am
✔ 最佳答案
======================================================

圖片參考:http://img175.imageshack.us/img175/6488/81537683.png


2010-04-30 23:35:53 補充:
http://img175.imageshack.us/img175/6488/81537683.png

2010-05-03 20:39:26 補充:
考慮十位時,100^2 +12000A + 2000BC+1200B可忽略
餘下36+120C,它的十位值就是36的3和120中的20和C的積
單看十位必然是2C+3之個位數


收錄日期: 2021-04-23 23:21:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100430000051KK01605

檢視 Wayback Machine 備份