三角和perfect square問題5條奧數高手請進20分

2010-05-01 5:43 am
1.
三角形ABC,證明sin(A/2) <= a/(b+c)
2.
a 是 prime number,b是正整數,a (2a+b)^2= 509 (4a+511b), 找 a和b 的值
3.
找一個正整數,當加於50就是perfect square,這個正整數減於31也是一個perfect square。
4.
Prove: For any positive integer n, the algebraic expression n^6 + 3n^5 - 9n^4 - 11n^3 + 8n^2 + 12n +3 cannot express as a perfect square number.
5.
Prove that 30000 cannot express as the sum of the square of two positive integers.

由於這5條問題都算很難,所以我給20分,請各位儘量回答,分享知識,我將給於最佳回答5顆星。^^
更新1:

請列出計算方法,謝謝!

回答 (5)

2010-05-01 7:24 am
✔ 最佳答案
3) 留意:
40^2 + 81 = 41^2, 因為 81 為第 41 個正單數.

所以答案為 1631

2010-04-30 23:24:05 補充:
1) 以正弦定律計:

a/sin A = b/sin B = c/sin C = k, 其中 k 為某常數.

所以:

a/(b + c) = k sin A/(k sin B + k sin C)

= sin A/(sin B + sin C)

= 2 sin (A/2) cos (A/2)/{2 sin [(B + C)/2] cos [(B - C)/2]}

= sin (A/2) cos (A/2)/{sin (90 - A/2) cos [(B - C)/2]}

= sin (A/2) cos (A/2)/{cos (A/2) cos [(B - C)/2]}

= sin (A/2)/cos [(B - C)/2]

由於 cos [(B - C)/2] <= 1, 1/cos [(B - C)/2] >= 1

所以:

sin (A/2)/cos [(B - C)/2] >= sin (A/2)

2) 留意 509 為質數, 所以 a 或 2a + b 其中一個必為 509.

若 a = 509, 則:

(b + 1018)2 = 511b + 2036

b2 + 2036b + 10182 = 511b + 2036

b2 + 1525b + (10182 - 2036) = 0

此方程式的判別式為負數, 所以 b 不是實數. 即 a = 509 的可能排除.

若 2a + b = 509, 則:

a (2a + b) = 4a + 511b

509a = 2(2a + b) + 509b

509a = 1018 + 509b

a - b = 2

4) Suppose that n6 + 3n5 - 9n4 - 11n3 + 8n2 + 12n + 3 is a perfect square, then it must be in the form:

n6 + 3n5 - 9n4 - 11n3 + 8n2 + 12n + 3 = (n3 + an2 + bn + c)2

where a, b and c are some constants.

Now since n3 + an2 + bn + c is an integer, all a, b and c must be rational. Hence when expanding the equality for:

n6 + 3n5 - 9n4 - 11n3 + 8n2 + 12n + 3 = (n3 + an2 + bn + c)2

we get c2 = 3, implying that c is irrational.

Hence the assumption leads to a contradiction.

5) Pls. allow some time for me to think further.
參考: Myself
2010-05-06 12:01 am
2010-05-01 5:48 pm
(3) n+50=a^2...(1)
n-31=b^2...(2)
(1)-(2)=>a^2-b^2=81
(a+b)(a-b)=81
a+b=81 and a-b=1=>a=41=>n=1681
a+b=27 and a-b=3=>a=15=>n=175
a+b=9 and a-b=9=>a=9=>n=31
Three solutions

2010-05-01 09:48:49 補充:
first case n=1631
2010-05-01 8:33 am
2010-05-01 6:25 am
你好厲害啊!!!可以幫我做其他題嗎?


收錄日期: 2021-04-24 10:08:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100430000051KK01518

檢視 Wayback Machine 備份