F4 Maths (angles in circle 2

2010-04-29 5:43 pm
http://f20.yahoofs.com/hkblog/ux4rRlOBHhLnw7YkAOw-_1/blog/ap_20100429083344416.jpg?ib_____DjoJD_W7w

In the fig, O is the centre.
If angle AEF = angle DEF, can we prove that arc AF = arc FD?

回答 (1)

2010-04-29 9:23 pm
✔ 最佳答案

圖片參考:http://imgcld.yimg.com/8/n/HA04628698/o/701004290200613873388690.jpg


Extend DE to meet the circumference at M ,
Extend AE to meet the circumference at N ,

Let L be the point on ME such that OL 丄 ME,
Let r be the point on NE such that OR 丄 NE ,

ㄥMEA = ㄥNED (opp.ㄥ) ,

ㄥAEF = ㄥDEF (given) ,

ㄥOEL = 180° - ㄥMEA - ㄥAEF

and ㄥOEr = 180° - ㄥNED - ㄥDEF

Hence ㄥAEF = ㄥOEL

In right-angle △OLE and △ORE ,

OE = OE (common)
ㄥAEF = ㄥOEL ,

So △OLE ≅ △ORE (RHS)

and hence Or = OL.

In right-angle △OrA and △OLD

Or = OL(proved)
OA = OD (radius)

△OrA ≅ △OLD (RHS)

Hence Ar = DL

i.e. AE + Er = DE + EL

Since Er = EL (corr. sides of △OLE and △OrE)

We have AE = DE

In △ AEF and △DEF ,

AE = DE (proved)
EF = EF (common)
ㄥAEF = ㄥDEF (given)

△AEF ≅ △DEF (SAS)

Hence AF = FD

Therefore arc AF = arc FD (equal chord , equal arc)






2010-04-29 13:28:15 補充:
Line 9 :

Hence ㄥAEF = ㄥOEL

corr to

Hence ㄥOEr = ㄥOEL


Line 12 :

ㄥAEF = ㄥOEL

corr to

ㄥOEr = ㄥOEL

Sorry!!


收錄日期: 2021-04-21 22:11:58
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100429000051KK02006

檢視 Wayback Machine 備份