✔ 最佳答案
圖片參考:
http://imgcld.yimg.com/8/n/HA04628698/o/701004290200613873388690.jpg
Extend DE to meet the circumference at M ,
Extend AE to meet the circumference at N ,
Let L be the point on ME such that OL 丄 ME,
Let r be the point on NE such that OR 丄 NE ,
ㄥMEA = ㄥNED (opp.ㄥ) ,
ㄥAEF = ㄥDEF (given) ,
ㄥOEL = 180° - ㄥMEA - ㄥAEF
and ㄥOEr = 180° - ㄥNED - ㄥDEF
Hence ㄥAEF = ㄥOEL
In right-angle △OLE and △ORE ,
OE = OE (common)
ㄥAEF = ㄥOEL ,
So △OLE ≅ △ORE (RHS)
and hence Or = OL.
In right-angle △OrA and △OLD
Or = OL(proved)
OA = OD (radius)
△OrA ≅ △OLD (RHS)
Hence Ar = DL
i.e. AE + Er = DE + EL
Since Er = EL (corr. sides of △OLE and △OrE)
We have AE = DE
In △ AEF and △DEF ,
AE = DE (proved)
EF = EF (common)
ㄥAEF = ㄥDEF (given)
△AEF ≅ △DEF (SAS)
Hence AF = FD
Therefore arc AF = arc FD (equal chord , equal arc)
2010-04-29 13:28:15 補充:
Line 9 :
Hence ㄥAEF = ㄥOEL
corr to
Hence ㄥOEr = ㄥOEL
Line 12 :
ㄥAEF = ㄥOEL
corr to
ㄥOEr = ㄥOEL
Sorry!!