Binomial

2010-04-27 4:17 am
As follows:

圖片參考:http://img594.imageshack.us/img594/5300/screenhunter09apr262011h.png
更新1:

Why sub. r = 25?

更新2:

*n=25

回答 (3)

2010-04-27 4:29 am
✔ 最佳答案
a)
rS - S = r(a + ar + ar^2 + ... + ar^(n-1)) - (a + ar + ar^2 + ... + ar^(n-1))
S(r - 1) = (ar + ar^2 + ... + ar^n) - (a + ar + ar^2 + ... + ar^(n-1))
S(r - 1) = ar^n - a
S = a(r^n - 1) / (r - 1)


b)
1 + (1+x) + (1+x)^2 + ... + (1+x)^24
= 1[(1+x)^25 - 1] / (1+x - 1)
= [(1+x)^25 - 1] / x
= (1 + (25C1)x + (25C2)x^2 + (25C3)x^3 + ... + (25C25)x^25 - 1) / x
= (25C1) + (25C2)x + (25C3)x^2 + ... + (25C25)x^24
The coefficient of x^2 = 25C3 = 2300


2010-04-26 20:55:23 補充:
Why sub. r = 25?

1 + (1+x) + (1+x)^2 + ... + (1+x)^24



1 + (1+x) + (1+x)^2 + ... + (1+x)^(25-1)

如不選我,請通知我,讓我刪除答案,多謝!!
2010-04-27 4:38 am
=.=

2010-04-26 20:57:09 補充:
真的是左右為難~
2010-04-27 4:36 am
rS - S
= r[ a + ar + ... + ar^(n-1) ] - [ a + ar + ... + ar^(n-1) ]
= ar + ar^2 + ... + ar^n - a - ar - ... - ar^(n-1)
= ar^n - a
= a(r^n - 1)

rS - S = a(r^n - 1)
(r - 1)S = a(r^n - 1)
S = a(r^n - 1) / (r - 1)
---------------------------------------------------------------
a = 1, r = 1 + x, n = 25
S = [ (1 + x)^25 - 1 ] / (1 + x - 1)
= [ (1 + x)^25 - 1 ] / x
= [ 1 + 25x + .. + (25C3) x^3 + ... - 1 ] / x
= [ 25x + .. + (25C3) x^3 + ... ] / x
= 25 + .. + (25C3) x^2 + ...

coeff of x^2 = 25C3 = 2300


2010-04-26 20:37:41 補充:
好似我清楚 d, 請投我一票, 謝謝


收錄日期: 2021-04-21 22:09:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100426000051KK01316

檢視 Wayback Machine 備份