∫(0 to ∞) sin x^p dx

2010-04-23 5:28 pm
Evaluate ∫(0 to ∞) sin x^p dx .

Is the procedure similar to http://tw.group.knowledge.yahoo.com/math-etm/article/view?aid=102 ?

回答 (2)

2010-04-23 10:59 pm
✔ 最佳答案
∫[0~∞] sin(x^p)dx (t=x^p, p>1)
=(1/p)∫[0~∞] t^(1/p -1) sint dt=(1/p)∫[0~∞] x^(1/p -1) sinx dx
=1/[pΓ(1-1/p)] ∫[0~∞] t^(-1/p)exp(-xt)sinx dt dx
=1/[pΓ(1-1/p)] ∫[0~∞] t^(-1/p)/(1+t^2) dt (L{sinx}= 1/(s^2+1) )
=1/[pΓ(1-1/p)] ∫[0~π/2] (cosx/sinx)^(1/p) dx
=1/[2pΓ(1-1/p)] B(1-a, a) (a= 0.5(1+1/p) )
=Γ(1/p]/[2pΓ(1/p)Γ(1-1/p)]* π/sin(aπ)
=Γ(1/p)*sin(π/p) /(2πp)* π/cos(π/2p)
=Γ(1/p)sin(π/2p)/p
2010-04-24 9:13 am
我這題第一個印象是走扇形路徑積分

不過我沒有去算

不曉得扇形可不可以積出來


收錄日期: 2021-04-30 14:41:46
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100423000015KK01756

檢視 Wayback Machine 備份