微積分的問題!!( Cylinders Surfaces)

2010-04-21 2:58 am
Find an equation of the form p = f(θ, σ) in spherical
coordinates for the following surface.
z^2 = 3 (x^2 + y^2)

懇請高手幫我....

回答 (2)

2010-04-21 5:03 am
✔ 最佳答案
In spherical coordinates,

Let x = psinθcosσ

y = psinθsinσ

z = pcosθ

So, the equation becomes:

(pcosθ)^2 = 3[(psinθcosσ)^2 + (psinθsinσ)^2]

p^2cos^2θ = 3p^2sin^2θ(cos^2σ + sin^2σ)

cos^2θ = 3sin^2θ

tanθ = +- sqrt3

θ = +- pi/3

So, the equation of the surface is θ = +- pi/3
參考: Physics king
2010-04-21 6:41 am
θ = pi/3, 2pi/3
球狀座標中 p 是與點距離
θ 是與正向 z 軸的"夾角"
σ 是點投影到 xy 平面後與正向 x 軸逆時針的角度
所以 p >= 0, 0 <= θ <= pi, 0 <= σ <= 2pi

2010-04-20 22:48:42 補充:
θ = pi/3, 2pi/3
球狀座標中 p 是與"原"點距離
θ 是與正向 z 軸的"夾角"
σ 是點投影到 xy 平面後與正向 x 軸逆時針的角度
所以 p >= 0, 0 <= θ <= pi, 0 <= σ <= 2pi


收錄日期: 2021-04-19 21:55:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100420000010KK06201

檢視 Wayback Machine 備份