Induction

2010-04-20 3:57 am
Prove by MI that 4^n + 2(3^n) + 2 is divisible by 12 for all positive integers n.
更新1:

Can you explain 3(4^k) + 4(3^k) + 12A is divisible by 12?

回答 (2)

2010-04-20 4:08 am
✔ 最佳答案

圖片參考:http://i.imagehost.org/0563/ScreenHunter_21_Apr_19_20_07.gif


http://i.imagehost.org/0563/ScreenHunter_21_Apr_19_20_07.gif

2010-04-20 22:36:55 補充:
Because k and A are postive integers.
2010-04-20 4:59 am
For n = 1 :

4 + 2*3 + 2 = 12 is true,

Let n = k

i.e 4^k + 2(3^k) + 2 is divisible by 12 be true , let it be 12S :

when n = k+1 :

4^(k+1) + 2(3^(k+1)) + 2

= 4(4^k) + 6(3^k) + 2

= 4(4^k) + 8(3^k) + 8 - (2(3^k) + 6)

= 4(12S) - (2(3^k) + 6)

2010-04-19 21:00:02 補充:
= 4(12S) - [2(3^k) + 3(12S - 4^k - 2(3^k))].....Since 2 = 12S - 4^k - 2(3^k)

= 4(12S) - [ - 4(3^k) + 3(12S - 4^k) ]

= 4(12S) - 4[ - (3^k) + 3(3S - 4^(k-1)) ]

= 4(12S) - 12[ - (3^(k-1) + (3S - 4^(k-1)) ]

= 12 { 4S - [ - (3^(k-1) + (3S - 4^(k-1)) ] }

which is divisible by 12.


收錄日期: 2021-04-21 22:11:07
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100419000051KK01309

檢視 Wayback Machine 備份