有冇人讀過stats, 有野想問..:(

2010-04-15 2:04 am
1a) A bag contains 4 red counters and 6 green counters. Four counters are drawn at random from the bag, without replacement. Calculate the probability that

i) All the counters are green;
ii) at least one counter of each colour is drawn;
iii) at least two green counters are drawn; given that at least one of each colour is drawn.

b) Are the events "at least two green counters are drawn" and "at least one counter of each colour is drawn" independent? Explain briefly.

2) A coin and a six-faced die are thrown simultaneously. The random variable X is defined as follows:

"If the coin shows a head, then X is the score on the die. If the coin shows tail, then X is twice the score on the die."

a) Find the expected value of X.
b) Find the variance of X

If the experiment is repeated and the sum of the two values obtained for X is denoted b Y.

c) Find P (Y=4) and E(Y)

唔該哂:-(

回答 (1)

2010-04-16 5:49 pm
✔ 最佳答案




X

Pr(X)

X * Pr(X)

X2 * Pr(X)


1

0.0833

0.0833

0.0833


2

0.1667

0.3333

0.6667


3

0.0833

0.2500

0.7500


4

0.1667

0.6667

2.6667


5

0.0833

0.4167

2.0833


6

0.1667

1.0000

6.0000


8

0.0833

0.6667

5.3333


10

0.0833

0.8333

8.3333


12

0.0833

1.0000

12.0000



S

5.2500

37.9167




Y

Pr(Y)

Y * Pr(Y)


2

0.0069

0.0139


3

0.0278

0.0833


4

0.0417

0.1667


5

0.0556

0.2778


6

0.0764

0.4583


7

0.0833

0.5833


8

0.0972

0.7778


9

0.0694

0.6250


10

0.0903

0.9028


11

0.0556

0.6111


12

0.0833

1.0000


13

0.0417

0.5417


14

0.0833

1.1667


15

0.0278

0.4167


16

0.0625

1.0000


17

0.0139

0.2361


18

0.0417

0.7500


20

0.0208

0.4167


22

0.0139

0.3056


24

0.0069

0.1667



S

10.5000

2010-04-16 09:50:07 補充:
1ai
Pr = 6/10 x 5/9 x 4/8 x 3/7 = 1/14 = 0.0714

2010-04-16 09:50:18 補充:
1aii
Pr = 1 – Pr(all green) – Pr(all red) = 1 – 1/14 – (4/10 x 3/9 x 2/8 x 1/7) = 1 – 1/14 – 1/210 = 97/105 = 0.9238

2010-04-16 09:50:21 補充:
Pr(at least 2 green | at least 1 green) = Pr(at least 2 green) / Pr(at least 1 green) = [1 – Pr(all red) – Pr(1 red)] / [1 – Pr(all red)] = [1 – 1/210 – (4/10 x 6/9 x 5/8 x 4/7) x 4] / (1 – 1/210) = (1 – 1/210 – 2/21) / (1 – 1/210) = (9/10) / (209/210) = 189/209 = 0.9043

2010-04-16 09:50:34 補充:
2a: E(X) = 5.25
2b: Var(X) = E(X2) – E2(X) = 37.9167 – 5.252 = 10.3542

2010-04-16 09:50:48 補充:
X1 X2 Y Pr(Y)
1 3 4 0.0069
2 2 4 0.0278
3 1 4 0.0069
 0.0417
Pr(Y=4) = 0.0417

2010-04-16 09:51:02 補充:
E(Y) = 10.5


收錄日期: 2021-04-23 18:39:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100414000051KK00925

檢視 Wayback Machine 備份