Sum to infinity

2010-04-14 6:51 am
Find the sum of infinity of the following series:

1/10 + 2/10^2 + 3/10^3 + 4/10^4 + 5/10^5 .....

A. 1/9

B. 10/81

C. 22/175

D. 100/ 729


Ans. is B, WHY???
更新1:

唔明E 行" = (1/10)/(1 - 1/10) + (1/10^2)/(1 - 1/10) + (1/10^3)/(1 - 1/10) + ... "

回答 (3)

2010-04-14 7:01 am
✔ 最佳答案
1/10 + 2/10^2 + 3/10^3 + 4/10^4 + 5/10^5 + ...

= (1/10 + 1/10^2 + 1/10^3 + 1/10^4 + 1/10^5 + ...) +
(1/10^2 + 1/10^3 + 1/10^4 + 1/10^5 + ...) +
(1/10^3 + 1/10^4 + 1/10^5 + ...) +
(1/10^4 + 1/10^5 + ...)

= (1/10)/(1 - 1/10) + (1/10^2)/(1 - 1/10) + (1/10^3)/(1 - 1/10) + ...

= (10/9)[1/10 + 1/10^2 + 1/10^3 + ...]

= (10/9)[(1/10)/(1 - 1/10)]

= 1/9[10/9]

= 10/81

So, the answer is B.
參考: Physics king
2010-04-14 7:09 am
A=1/10 + 2/10^2 + 3/10^3 + 4/10^4 + 5/10^5 ....
A/10= 1/10^2+ 2/10^3 +.3/10^4 +4/10^5+....
--------------------------------------------------------------------
9A/10=1/10+1/10^2+1/10^3+.....=(1/10)/[1-(1/10)]=1/9
A=10/81


收錄日期: 2021-04-19 21:51:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100413000051KK01752

檢視 Wayback Machine 備份