f.4 M2 M.I. deduce a formula
Deduce the formula( may be it cannot deduce) is true for all positive integers n
a. 1*2+3*4+5*6+7*8+...+(2n-1)(2n)
b. 1/(2-2^(0.5))+1/(5^(0.5)-3^(0.5))+1/(6^(0.5)-2)+...+1/((n+3)^(0.5)+(n+1)^0.5))
c. n*1+(n-1)*3+(n-2)*5+....+1*(2n-1)
d. 2*3*4+3*4*7+4*5*12+...+(n+1)(n+2)((n^2)+3)
e.2*2+5*4+10*8+.....+((n^2)+1)(2^n)
回答 (4)
a. 1*2+3*4+5*6+7*8+...+(2n-1)(2n) = ?
b. 1/(2-2^(0.5))+1/(5^(0.5)-3^(0.5))+1/(6^(0.5)-2)+...+1/((n+3)^(0.5)+(n+1)^0.5)) =?
c. n*1+(n-1)*3+(n-2)*5+....+1*(2n-1) =?
d. 2*3*4+3*4*7+4*5*12+...+(n+1)(n+2)((n^2)+3)=?
e.2*2+5*4+10*8+.....+((n^2)+1)(2^n)=?
收錄日期: 2021-04-23 23:22:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100413000051KK01725
檢視 Wayback Machine 備份