F4 Maths: Exponential Series

2010-04-07 1:27 am
Please help.

Find the value of 2+(2^3)/3!+(2^5)/5!+(2^7)/7!+...+(2^2r+1)/(2r+1)!+.... in terms of e.

回答 (2)

2010-04-07 2:46 am
✔ 最佳答案
By the ordinary exponential series:

ex = 1 + x + x2/2! + x3/3! + ...

Let k = 2 + 23/3! + 25/5! + ... + 22r+1/(2r + 1)! + ...

Sub x = 2, then

e2 = 1 + 2 + 22/2! + 23/3! + 24/4! + ...

= (1 + 22/2! + 24/4! + ...) + k

Sub x = -2, then

e-2 = 1 - 2 + 22/2! - 23/3! + 24/4! - ...

= (1 + 22/2! + 24/4! + ...) - k

Then

e2 - e-2 = 2k

k = (e2 - e-2)/2
參考: Myself
2010-04-07 2:43 am
Hope I can help you !


Module 2 : Algebra and calculus


2+(2^3)/3!+(2^5)/5!+(2^7)/7!+...+(2^2r+1)/(2r+1)!+.... = ?

Answer :

Since , e^x = 1 + x + x²/2! + x³/3! + .......

Let x = 2 ,

e^2 = 1 + 2 + 2²/2! + 2³/3! + ....... (1)

Considerate (1) and[ 2+(2^3)/3!+(2^5)/5!+(2^7)/7!+...+(2^2r+1)/(2r+1)!+....]

2+(2^3)/3!+(2^5)/5!+(2^7)/7!+...+(2^2r+1)/(2r+1)!+....

= (1) - [ 1+ 2²/2! + (2^4)/4! + ....]

= e^2 - (1+2+16/24+4/45+2/315+....+(2^2r)/(2r)!+...)

= ...........

參考: By myself


收錄日期: 2021-04-16 12:16:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100406000051KK01266

檢視 Wayback Machine 備份