✔ 最佳答案
(2-k)x+(1+2k)y-(4+3k)=0
2x + y - 4 - kx + 2ky - 3k = 0
(2x + y - 4) - k(x - 2y + 3) = 0
Solve :
L1 : 2x + y - 4 = 0....(1)
L2 : x - 2y + 3 = 0....(2)
(1) - (2)*2 :
5y - 10 = 0
y = 2 and hence
x = 1
The coordinates of P is (1 , 2)
Method 2 :
Since the line passes through a fixed point P for any value of k.
When k = 2 , the line becomes (2-2)x + (1+2*2)y - (4+3*2) = 0 ,
5y - 10 = 0 , y = 2 , y-coordinate of P must be 2 ,
when k = -1/2 , the line becomes (2 + 1/2)x + (1 - 2*1/2)y - (4 - 3*1/2) = 0 ,
(5/2)x - 5/2 = 0
x = 1 , the x - coordinate of P must be 1 ,
So the coordinates of P is (1 , 2)