Probability Question

2010-03-18 9:47 pm
Let X be a binomial random variable with parameters n and p.
Show that
E[1/(X+1)] = {1-(1-p)^(n+1)}/{(n+1)p}

回答 (1)

2010-03-19 6:37 am
✔ 最佳答案
Let A=E[1/(x+1)]=Σ[k=0~n] C(n,k)p^k*q^(n-k)/(k+1). (q=1-p)
Integrate both sides of f(t)=(t+q)^n=Σ[k=0~n] C(n,k)t^k*q^(n-k),
for t=0~x, then
∫[0~x] (t+q)^n dt=Σ[k=0~n] {C(n,k) x^(k+1) *q^(n-k) / (k+1) }
thus,
[(x+q)^(n+1)-q^(n+1) ]/(n+1)=Σ[k=0~n]{C(n,k)x^(k+1)q^(n-k)/(k+1)}
Set x=p, then
[1-(1-p)^(n+1)]/(n+1)=Σ[k=0~n] C(n,k)p^(k+1)q^(n-k)/(k+1)
so,
[1-(1-p)^(n+1)]/[(n+1)p]=Σ[0~n]C(n,k)p^kq^(n-k)/(k+1) =A=E[1/(x+1)]


收錄日期: 2021-04-26 14:00:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100318000051KK00654

檢視 Wayback Machine 備份