HOW TO SOLVE THIS?????

2010-03-12 1:12 pm
CAN ANYONE HELP ME???????
a^5-b^5/a-b........
NOTE: ^ MEANS 'TO THE POWER OF'

回答 (5)

2010-03-12 1:31 pm
✔ 最佳答案
(a−b)^5 = a^5 − 5a⁴b¹ + 10a³b² − 10a²b³ + 5a¹b⁴− b^5
So, a^5 − b^5
= (a−b)^5 + 5a⁴b¹ − 10a³b² + 10a²b³ − 5a¹b⁴
= (a−b)^5 + 5ab(a³−2a²b+2ab²−b³)
= (a−b)^5 + 5ab(a³−b³−2a²b+2ab²)
= (a−b)^5 + 5ab[(a−b)³+3a²b−3ab²−2a²b+2ab²]
= (a−b)^5 + 5ab[(a−b)³+a²b−ab²]
= (a−b)^5 + 5ab[(a−b)³+ab(a−b)]
= (a−b)^5 + 5ab(a−b)[(a−b)²+ab]
= (a−b)^5 + 5ab(a−b)[a²−ab+b²]
= (a−b) [(a−b)^4 + 5ab(a²−ab+b²)]
So, (a^5−b^5)/(a−b)
= (a−b)^4 + 5ab(a²−ab+b²)
= a⁴+ a³b + 11a²b² + ab³ + b⁴.
2010-03-12 4:21 pm
a^5-b^5/a-b
=a^4+a^3b+a^2b^2+ab^3+b^4 this by actual division
2010-03-12 1:48 pm
a^n - b^n ≡ (a - b)[a^(n - 1)b^0 + a^(n - 2)b^1 + a^(n - 3)b^2 + ... + a^(n - n + 1)b^(n - 2) + a^(n - n)b^(n - 1)]

(a^5 - b^5)/(a - b)
= [(a - b)(a^4 + a^3b + a^2b^2 + ab^3 + b^4)]/(a - b)
= a^4 + a^3b + a^2b^2 + ab^3 + b^4
2010-03-12 1:19 pm
You don't have to capitalize everything ...
(a^5 - b ^5) / (b-a) = a^4 + a^3*b + a^2*b^2 +a*b^3 + b^4
2010-03-12 1:25 pm
You need to use parentheses. Can't tell if you mean
a⁵ - (b⁵/a) - b
or
(a⁵ - b⁵)/(a - b)
or
((a⁵ - b⁵)/a) - b)
etc.


收錄日期: 2021-05-01 13:10:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100312051242AAEvIW2

檢視 Wayback Machine 備份