急物理動量功課

2010-03-04 2:13 am
一個懸在天花板上的小球a,繩長度為50cm,小球a被拉至垂直位移10cm的位置,
並由靜止中釋放. 小球a擺至最底點時與另一個相同且靜止的小球b發生碰撞.
在碰撞後,小球a變為靜止,而小球b則擺向另一側.
設碰撞為彈性碰撞,求小球b擺向另一側可到達的最大角度.

要計算過程...答案為36.9度

回答 (2)

2010-03-04 3:10 am
✔ 最佳答案
Let the angle subtended by ball b be @ and the mass of each ball be m.
By conservation of energy,
PE lost by ball a = KE gain by ball a
m(10)(0.1)=0.5mu^2, where u is the speed of ball a just before collision
u=sqrt 2 m/s
By conservation of momentum,
total momentum before collsion = total momentum after collision
m(sqrt 2) + m(0) = m(0) + mv, where v is the speed of ball a just after collision
v=sqrt 2 m/s
By conservation of energy,
KE lost by ball b = PE gained by ball b
0.5m(sqrt 2)^2=m(10)h, where h is the magnitude vertical displacement of ball b after collision
h = 0.1m
Hence cos @ = (0.5-0.1)/0.5
@ = 36.9 degree
2010-03-04 3:16 am
這題非常簡單,碰撞為彈性碰撞,所以碰撞的情況不需考慮,只消考慮最初與最終的情況就可以了。

用能量守恆定律

A球失去的勢能 = B球得到的勢能

mgh1 = mgh2

h2 = h1

所以,B球得到最高的位移也是10 cm

而最大的角度則為cos^-1(50 - 10)/50 = 36.9*


收錄日期: 2021-04-19 21:28:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100303000051KK00986

檢視 Wayback Machine 備份