Limit of natural log

2010-02-27 1:06 am
Prove whether the limit:



圖片參考:http://i117.photobucket.com/albums/o61/billy_hywung/Feb10/Crazylim1.jpg


exists or not and evaluate it if it exists.

回答 (2)

2010-02-27 1:42 am
✔ 最佳答案
Answer: 1

By the approximation formula
n! = n (ln n)-n+O(n) As n->∞ ; n! ~ n (ln n)

So lim (n->∞) (ln n!)^(1/n)
=lim (n->∞) [n (ln n)]^(1/n)
=lim (n->∞) [n^(1/n)][(ln n)]^(1/n)
=1*1
=1

Note :
1 lim (n->∞) n^(1/n)=1
Proof: Let L=lim (n->∞) n^(1/n)
lim (n->∞) ln L=lim (n->∞) (1/n) ln n = 0
So lim (n->∞) L = 1

2 lim (n->∞) [(ln n)]^(1/n)=1
Let L=lim (n->∞) [(ln n)]^(1/n)
ln L = lim (n->∞) (1/n) ln [(ln n)] = 0
So lim (n->∞) L = 1


2010-02-27 2:20 am
1=[ln(n!)]^0 < [ln(n!)]^(1/n) < [n*ln(n)]^(1/n)
lim(n->inf) [n*ln(n)]^(1/n) = 1


收錄日期: 2021-04-26 14:00:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100226000051KK00991

檢視 Wayback Machine 備份