✔ 最佳答案
(a) (sin A + cos A)2 = sin2 A + cos2 A + 2 sin A cos A = 1 + sin 2A
Similarly:
(sin B + cos B)2 = 1 + sin 2B
(sin C + cos C)2 = 1 + sin 2C
(sin A + cos A)2 - (sin B + cos B)2 - (sin C + cos C)2 = (1 + sin 2A) - (1 + sin 2B) - (1 + sin 2C)
= sin 2A - sin 2B - sin 2C - 1
(b1) (sin A + cos A)2 - (sin B + cos B)2 - (sin C + cos C)2 = sin 2A - sin 2B - sin 2C - 1
= 2 sin (A - B) cos (A + B) - 2 sin C cos C - 1
= - 2 sin (A - B) cos C - 2 sin C cos C - 1
= - 2 cos C [sin (A - B) + sin C] - 1
= - 4 cos C sin [(A - B + C)/2] cos [(A - B - C)/2] - 1
= - 4 cos C sin (90 - B) cos (A - 90) - 1
= - 4 sin A cos B cos C - 1
(b) A = 90:
(sin A + cos A)2 - (sin B + cos B)2 - (sin C + cos C)2 = - 4 sin A cos B cos C - 1
1 - (sin B + cos B)2 - (sin C + cos C)2 = - 4 cos B cos C - 1
- 4 cos B cos C = 2 - (sin B + cos B)2 - (sin C + cos C)2
0 <= (sin B + cos B)2 , (sin C + cos C)2 <= 2
Hence
2 >= - 4 cos B cos C >= -2
-1/2 <= cos B cos C <= 1/2