F.4 math question

2010-02-26 3:05 am
Prove that 4(sin^2)18 + 2sin18 - 1 = 0 by using double angle formulae of cosine.

回答 (1)

2010-02-26 3:15 am
✔ 最佳答案
Since sin36 = cos54


2(sin18)(cos18) = 4(cos18)^3 - 3cos18


2(sin18) = 4(cos18)^2 - 3


2(sin18) = 4[1-(sin18)^2] - 3


4(sin18)^2 + 2(sin18) - 1 = 0

2010-02-25 19:35:14 補充:
cos54° = sin36°

Þ cos36° cos18°- sin36° sin18°=2sin18°cos18°

Þ cos36° cos18°- 2sin18° cos18° sin18°=2sin18°cos18°

Þ cos36° - 2sin18° sin18° = 2sin18°

Þ 1 - 2(sin18°)^2 - 2(sin18°)^2 = 2sin18°

Þ 4(sin18°)^2 + 2sin18° - 1 = 0

2010-02-25 20:10:37 補充:
cos 36 = sin 54

1 - 2(sin18)^2 = sin36 cos18 + cos36 sin18

1 - 2(sin18)^2 = 2sin18 cos18 cos18 + (1 - 2(sin18)^2) sin18

1 - 2(sin18)^2 = 2sin18 (1 - (sin18)^2) + (1 - 2(sin18)^2) sin18

1 - 2(sin18)^2 = 2sin18 - (2sin18)^3 + sin18 - 2(sin18)^3

4(sin18)^3 - 2(sin18)^2 - 3sin18 + 1 = 0

2010-02-25 20:10:42 補充:
(sin18 - 1)(4(sin18°)^2 + 2sin18° - 1) = 0

sin18 <> 1 ,

so 4(sin18°)^2 + 2sin18° - 1 = 0


收錄日期: 2021-04-13 17:06:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100225000051KK01152

檢視 Wayback Machine 備份