F.4 trigonometry~~~

2010-02-25 4:28 am
Let y = sec^2 [x - (π/6)] sec^2 [x - (π/2)].

(a) Show that y = 4 / {cos[2x - (2π / 3)] + 1/2} ^2

(b) Hence, find the minimum value of y.

回答 (1)

2010-02-25 7:16 am
✔ 最佳答案
(a) Consider cos2 (x - π/6) cos2 (x - π/2)

= [cos (x - π/6) cos (x - π/2)]2

= (1/2)2 [cos (2x - 2π/3) + cos 2π/3]2

= (1/4) [cos (2x - 2π/3) - 1/2]2

Thus 1/y = 4/[cos (2x - 2π/3) - 1/2]2

(b) -3/2 <= cos (2x - 2π/3) - 1/2 <= 1/2

0 <= [cos (2x - 2π/3) - 1/2]2 <= 9/4

4/9 <= 1/[cos (2x - 2π/3) - 1/2]2

Hence min. of y = 16/9
參考: Myself


收錄日期: 2021-04-13 17:06:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100224000051KK01403

檢視 Wayback Machine 備份