「難題」教廿年數的補習老師都唔識做!

2010-02-22 1:11 am
「難題」教廿年數的補習老師都唔識做!!



圖片參考:http://i256.photobucket.com/albums/hh182/zilu_photo/sshot-2010-02-21-17-03-46.png


呢個"limit"要點搵呢?

回答 (5)

2010-02-22 2:29 am
✔ 最佳答案
8+4*sqrt(11)

2010-02-21 18:29:58 補充:
Set a(1)=4√7, a(n+1)=4√[7+a(n)], n=1,2,3,...
(1) a(n)<8+4√11
(M.I.) a(n+1)<= 4√(7+8+4√11) =8+4√11
(2) a(n)> 8 (trivial)
(3) a(n+1)> a(n)
a(n+1)^2 - a(n)^2 = 16[7+a(n)] - a(n)^2
= - [a(n)-8]^2+ 176> -[ 4√11]^2 + 176=0
and a(n)>0, so, a(n+1)>a(n)

From (1),(3), we know that the sequence { a(n) } is increasing
and bounded above, hence, lim(n->inf.) a(n) exist.
Let lim(n->inf.) a(n)=x, then x=4√(7+x).
x^2= 16(7+x), x= 8 +/- 4√11 (8-4√11 rejects)
Ans: 8+4√11
2010-02-22 3:17 pm
Let x be 4√[7+4[√7+4[√7+4[√7+4]]]]...
x = 4√[7+4[√7+4[√7+4[√7+4]]]]... ---------(1)
x^2 = 7+4[√7+4[√7+4[√7+4]]]]... -----------(2)
(2) - (1), x^2 - x = 7
x^2 - x - 7 = 0
x = [1 +/- √29]/2
= (1+√29)/2 or (1-√29)/2
2010-02-22 1:54 am
好問題,有無高手可以指教?
假設題目加多句if exists
2010-02-22 1:48 am
是不是要先證limit存在?
2010-02-22 1:28 am
設 x = 4√(7+4√(7...........

所以 x = 4√(7+x)

x^2 - 16x - 112 = 0

x = 8 ± √704 /2

=21.267 or = -5.267


收錄日期: 2021-04-13 17:06:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100221000051KK01158

檢視 Wayback Machine 備份