A maths question (difficult)

2010-02-21 6:52 pm
133^n + 110^n + 84^n + 27^n = 144^n
find n
list all the procedure
更新1:

I want some pratical method. the method below is just like testing , I can also do this

回答 (2)

2010-02-21 9:53 pm
✔ 最佳答案
(for positive integer number n)
1. lim(n->∞) (133^n+110^n+84^n+27^n)/144^n =0
so, n is not a large number.
in fact, if n>6, 144^n > 133^n+110^n+84^n +27^n
2. consider the unit digit of 133^n, 110^n, 84^n, 27^n, 144^n
then n must be 1,3, 5
case n=1: reject.
case n=3: reject.
csee n=5: match
Ans: n=5


2010-02-22 01:52:05 補充:
133^n+110^n+84^n+27^n≡ 144^n (mod 7)
0+2^n+0+(-1)^n ≡ 4^n (mod 7)
when n=1, 1≡4 (mod 7) (inconsistent)
when n=3, 8-1≡ 64 (mod 7) (inconsistent)
when n=7, 2-1≡ 4^7≡4 (mod 7) (inconsistent)
when n>7, 144^n > 133^n+110^n+84^n+27^n
so, n=5
2010-02-21 9:24 pm
there is no algebraic method
you have to use numerical method


收錄日期: 2021-04-30 14:20:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100221000051KK00465

檢視 Wayback Machine 備份