✔ 最佳答案
請問天助, [11]~[19] 如何被 [9]! 整除?
2010-02-22 18:00:00 補充:
( 出處:
http://www.math.toronto.edu/oz/turgor/index.php ,
Solutions to Seniors A-Level Paper Fall 2009 by Jonathan Zung)
Define f(n) = 111....1 (n個1) and f(0) = 1 so that [0]! = 1.
Define
[n,k]=[n]!/[k]![n-k]! for n>=k>=0.
We use induction on n to prove that [n,k] is always a positive integer
for all n>=1.
For n = 0
[0,0]=[0]!/[0]![0]!= 1
Suppose the result holds for some n >0. Consider the next case.
[n + 1,k ] = [n + 1]!/[k]![n + 1 - k]!
= [n]! f(n + 1) / [k]![n + 1 - k]!
= [n]! f(n + 1 - k) * 10^k /[k]![n - k]!f(n + 1 - k)
+ [n]! f(k)/[k-1]![n + 1- k]!
=10^k*[n,k]+ [ n,k-1]
Since both terms in the last line are positive integers, the induction argument is complete. In particular, for any positive integers m and n, [m + n, m ]=[m + n]!/[m]![n]! is a positive integer, so that [m+n]! is divisible by [m]![n]!. (Jonathan Zung)
2010-02-25 15:22:58 補充:
[n + 1,k ] = [n + 1]!/[k]![n + 1 - k]!
= [n]! f(n + 1) / [k]![n + 1 - k]!
= [n]! f(n + 1 - k) * 10^k /[k]![n - k]!f(n + 1 - k)
+ [n]! f(k)/[k]![n + 1- k]!
=10^k*[n,k]+ [n]! /[k-1]![n + 1- k]!
=10^k*[n,k]+ [ n,k-1]