✔ 最佳答案
let tanx = t ,
then sinx = t/ sqrt(1+t^2) and cosx = 1/sqrt(1+t^2)
also tan2x=2t/(1-t^2)
then sin2x=2t/(1+t^2) and cos2x=(1-t^2)/(1+t^2)
so sin3x=sinxsin2x
=>sinxcos2x+sin2xcosx=sinxsin2x
=>( t/ sqrt(1+t^2))((1-t^2)/(1+t^2))+(2t/(1+t^2))( 1/sqrt(1+t^2))= (t/ sqrt(1+t^2))(2t/(1+t^2))
=>t-t^3+2t=2t^2
=>t^3-2t^2+t=0
=>t(t-1)^2=0
=>t=0 or t=1
=>tanx=0 or tanx=1
=>x=180n or 180n+45// where n is an integer .
2010-02-18 20:39:20 補充:
wrong step
2010-02-18 20:41:13 補充:
=>t-t^3+2t=2t^2
=>t(t^2+2t-3)=0
=>t=0 or t=1 or t=-3
=>tanx=0 , 1 or 3
=>x=180n , 180n+45 or 180n+arctan(3)