pure (higher derivatives)
show, by indution, that is y-xe^(-x), then d^ny/dx^n = (-1)^n(x-n)e^(-x)
回答 (2)
when n=0 , y=(-1)^0(x-0)e^(-x) , it is true for n=0
Assume it is true for n = k , where k is a non-negative integer ,
i.e. d^ky/dx^k=(-1)^(k)(x-k)e^(-x)
Consider n=k+1 ,
d^(k+1)y/dx^(k+1)
=d(d^ky/dx^k)/dx
=(-1)^k ( e^(-x)-(x-k)e^(-x)
=(-1)^(k+1)(x-(k+1))e^(-x)
it is true for n=k+1
By mathematical induction , it is true for all non- negative integer n.
2010-02-18 20:15:56 補充:
快我一步 .... so sad
收錄日期: 2021-04-22 00:46:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100218000051KK01515
檢視 Wayback Machine 備份