F.3 MathsQuadrilaterals!!

2010-02-10 4:09 am
1.In the figure ,ABCD is a rhombus,PABQ is a straight line such that PA=AB=BQ.PD and QC meet at R when they are extended.Prove that

(a)PR//AC

(b)DB//RQ

(c)angle PRQ is a right angle.
http://img692.imageshack.us/img692/6162/rhombus.png


2.In the figure ,ABCG and CDEF are squares.BCF and GCD are straight lines.AD cuts BC at M while AF cuts GC at N.

(a)Prove that AD=AF

(b)If AD=DF ,find angle DMF.
http://img683.imageshack.us/img683/825/72113953.png

回答 (1)

2010-02-10 6:06 am
✔ 最佳答案
(1)
PA=AB=BQ (GIVEN)
AD=AB=BC (PROPERTY OF RHOMBUS)
∴ AP=AD
∠ APD = ∠ ADP (BASE ∠s ,ISOS. △)
AC bisects ∠ CAD (PROPERTY OF RHOMBUS)
∴ ∠ BAC= ∠ CAD
∠BAD = ∠ APD + ∠ ADP (ext. ∠ of △)
∠BAC = ∠ APD
PR // AC (corr. ∠s equal)

similarly

(b)DB//RQ
同上面(a) 一樣,試試自己做

c)
∠DAB + ∠ABC =180゚ (PROPERTY OF RHOMBUS)
from answer (a) & (b)
∠DAB = 2∠P
∠ABC = 2∠Q
∴ 2∠P + 2∠Q = 180゚
∠P + ∠Q = 90゚
∠R = 180゚ - ∠P - ∠Q = 90゚ (∠ sum of △)
angle PRQ is a right angle.

2. AG = AB (PROPERTY of Square).......(1)
CG = CB (PROPERTY of Square)
CD = CF (PROPERTY of Square)
GD = BF ......... .....(2)
∠ G = ∠B = 90゚ (PROPERTY of Square).......(3)
△ AGD congrent △ABF (SAS) from 1,2,3
AD=AF (corr. sides congrent △)

AD=DF (GIVEN)
& from answer (a) AD=AF
△ADF is equilateral)
∠ ADF = 60゚ (Property of equilateral △)
∠ FDC =45゚ (PROPERTY of Square)
∠MDC = 60゚ - 45゚ =15゚
∠BCG =90゚ (PROPERTY of Square)
∠BCD =180゚ - 90゚ = 90゚ (adj. ∠s on st. line)
angle DMF = 180゚ - 90゚ - 15゚ = 75゚ (∠ sum of △)


收錄日期: 2021-04-13 17:05:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100209000051KK01205

檢視 Wayback Machine 備份