F.4 math~ trigonometry

2010-02-06 3:36 am
It is given that sinB / sinA = cos (A+B). Prove that tan(A+B) = 2tanA

回答 (1)

2010-02-06 5:09 am
✔ 最佳答案
sin B/sin A = cos (A + B)

sin B = sin A(cos A cos B - sin A sin B)

sin B = sin A cos A cos B - sin2 A sin B

sin B(sin2 A + cos2 A) = sin A cos A cos B - sin2 A sin B

sin B cos2 A = sin A cos A cos B - 2sin2 A sin B

sin A cos A cos B + sin B cos2 A = 2sin A cos A cos B - 2sin2 A sin B

Dividing both sides by cos2 A cos B:

tan A + tan B = 2tan A - 2tan2 A tan B

tan A + tan B = 2tan A(1 - tan A tan B)

2 tan A = (tan A + tan B)/(1 - tan A tan B)

= tan (A + B)
參考: Myself


收錄日期: 2021-04-13 17:04:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100205000051KK01155

檢視 Wayback Machine 備份