關於函數的計算..........請詳解

2010-01-30 3:01 am
1.已知 f(x) = (10^x-10^-x) / (10^x+10^-x)
(1)證明 f(x) 在定義域內是增函數.
(2)求 f(x) 的值域.

2.已知二次函數f(x)滿足條件 f(1+x) = f(1-x) ,且函數 f(x) 的最大值為15, 又 f(x)=0 的兩根立方和等於12, 求 f(x) 的解析式.

回答 (2)

2010-01-30 9:28 am
✔ 最佳答案
1.1) f(x)的定義為所有實數R

f(x) = (10^x-10^-x) / (10^x+10^-x) = (10^2x - 1) / (10^2x + 1) (擴分10倍)

設 a , b ∈ R , 且 a < b .

則 f(b) - f(a) = (10^2b -1 )/(10^2b + 1) - (10^2a - 1)/(10^2a + 1)

= [(10^2b - 1)(10^2a + 1) - (10^2a - 1)(10^2b + 1)] / [(10^2a + 1)(10^2b + 1)]

= 2(10^2b - 10^2a) / [(10^2a + 1)(10^2b + 1)]

因10^x是增函數 , 所以當b > a 時 ,

10^2b - 10^2a > 0,而 10^2a + 1 > 0, 10^2b + 1 > 0, 故當 b > a 時 ,

f(b) - f(a) > 0 , 得證 f(x) 在定義域內是增函數.

1.2) 設 f(x) = (10^2x - 1) / (10^2x + 1) = y

則解得 10^2x = (1+y)/(1-y)

而 10^2x > 0 , 即 (1+y)/(1-y) > 0 , 擴分 (1-y)^2 倍,

(1+y)(1-y) > 0

- 1 < y < 1 ,

- 1 < f(x) < 1

f(x)的值域為 ( - 1 , 1 )



2) 設 f(x) = ax^2 + bx + c
f(1+x) = f(1-x) :
a(1+x)^2 + b(1+x) + c = a(1-x)^2 + b(1-x) + c
a [(1+x)^2 - (1-x)^2] + b[(1+x) - (1-x)] = 0
a(4x) + b(2x) = 0
x(2a + b) = 0
x=0 或 (2a + b) = 0
即 b = - 2a
f(x) = ax^2 - 2ax + c
f(x) 的最大值為15 :
配方 :
f(x) = a(x^2 - 2x + 1) + c-a = a(x-1)^2 + c-a
得 a < 0 , c - a = 15 即 c = a + 15
f(x) = ax^2 - 2ax + (a+15) ;
(x)=0 的兩根立方和等於12 :
設兩根 A , B
兩根和 A+B = 2a/a = 2 , 兩根積 AB = (a+15)/a
A^3 + B^3 = (A+B)(A^2 - AB + B^2) = (A+B)[(A+B)^2 - 3AB]
= (2)(2^2 - 3(a+15)/a) = 12
3(a+15)/a = - 2
3a + 45 = -2a
a = - 9
f(x) 的解析式 : ax^2 - 2ax + (a+15)
=- 9x^2 + 18x + 6

2010-01-30 13:17:06 補充:
更正 : 擴分 (1-y)^2 倍 應是

分母乘(1-y)^2
2010-01-30 3:38 am
x=x=z=f=g=hjuu


收錄日期: 2021-04-21 22:07:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100129000051KK01197

檢視 Wayback Machine 備份