✔ 最佳答案
1. 設焦點(a,b), 則2a-b=5
過點(1,1)與軸平行直線為 2x-y=1
由光學性質焦點(a,b)對稱於切線x=1之點(2-a,b)必在2x-y=1上
so, 2(2-a)-b=1, 又 2a-b=5, 得(a,b)=(2,-1)
2.(粗黑字為向量)
(性質)P為△ABC內部一點, 若△PBC:△PAC:△PAB=k:m:n, 則
kPA+mPB+nPC=0
(A)M為銳角△ABC之外心,則
△MBC:△MAC:△MAB=sin2A:sin2B:sin2C=sinAcosA: .. :sinCcosC
(正弦定理)= acosA: bcosB:c cosC
so, a cosA MA+b cosB MB+ c cosC MC=0
(B)H為銳角△ABC之垂心
設△ABC三個高為AD, BE, CF,則
AD=c sinB, AE=c cosA, AH=AE/sinC= c cosA/sinC
so, HD=AD-AH=csinB- c cosA/sinC= (c/sinC)*(sinBsinC-cosA)
=(c/sinC)*[sinB*sinC+cos(B+C)]=(c/sinC)*cosBcosC
so,△HBC=a*(c cosB cos C)/(2sinC)=aRcosBcosC (R為外接圓半徑)
so,△HBC:△HAC:△HAB=aRcosBcosC: bRcosAcosC:cRcosAcosB
(同除以cosAcosBcosC)= a/cosA: b/cosB: c/cosC
(正弦thm)= tanA: tanB: tanC
故 tanA HA+tanB HB+ tanC HC=0
(C)G為△ABC重心,則
3AG=AB-CA, 3BG=-AB+BC, 3CG=CA-BC
(3式均取絶對值再平方和)得
9(AG^2+BG^2+CG^2)=2(AB^2+BC^2+CA^2) - 2(兩兩內積)
=2(a^2+b^2+c^2)- 2(AB, BC, CA兩兩內積) ----(A)
又AB+BC+CA=0 , so,
0=| AB+BC+CA |^2=a^2+b^2+c^2+2(兩兩內積)
so, AB, BC, CA兩兩內積= - (a^2+b^2+c^2)/2 代入(A)式
得 9(AG^2+BG^2+CG^2)= 3(a^2+b^2+c^2)
or GA^2+GB^2+GC^2=(a^2+b^2+c^2)/3