✔ 最佳答案
Choose an integer M>|x|, so that |x|/M<1.
For n>M, we have
0 <= |x|^n / n! = |x|^n / [1*2*...*M*(M+1)*...*n]
<= |x|^n / [M! M^{n-M}] = (M^M)/M! * (|x|/M)^n
Now since M^M/M! is a constant, and |x|/M<1,
by Sandwich Theorem, we have lim{n→∞} |x|^n/n! = 0